
BIDScoin
Release 3.5.2

Mar 21, 2021

Contents

1 BIDScoin functionality 3

2 Note: 5
2.1 Installation . 5

2.1.1 Dcm2niix installation . 5
2.1.2 Python 3 installation . 5
2.1.3 BIDScoin installation . 5

2.2 Data preparation . 6
2.2.1 Required source data structure . 6
2.2.2 Data management utilities . 8

2.3 The BIDScoin workflow . 11
2.3.1 Step 1a: Running the bidsmapper . 11
2.3.2 Step 1b: Running the bidseditor . 12
2.3.3 Step 2: Running the bidscoiner . 15

2.4 The bidsmap explained . 16
2.4.1 Structure and content . 16
2.4.2 From template to study . 18
2.4.3 Special bidsmap features . 18

2.5 Finishing up . 19
2.5.1 Adding meta-data . 19
2.5.2 Data sharing utilities . 19
2.5.3 BIDS validation . 21

2.6 Options . 21
2.6.1 BIDScoin . 22
2.6.2 dcm2niix . 22
2.6.3 Plugins . 22

2.7 Advanced usage . 22
2.7.1 Site specific / customized template . 22
2.7.2 Plugins . 24

2.8 Screenshots . 25
2.8.1 The bidseditor . 25

2.9 Demo and tutorial . 25
2.9.1 BIDS introduction and BIDScoin demo . 25
2.9.2 BIDScoin tutorial . 27

i

ii

BIDScoin, Release 3.5.2

BIDScoin is a user friendly open-source python toolkit that converts (“coins”) source-level (raw) neuroimaging data-
sets to nifti / json / tsv data-sets that are organized following the Brain Imaging Data Structure, a.k.a. the BIDS
standard. Rather then depending on complex or ambiguous programmatic logic for the identification of imaging
modalities, BIDScoin uses a mapping approach to identify and convert the raw source data into BIDS data. Dif-
ferent runs of source data are identified by reading information from MRI header files (DICOM or PAR/REC; e.g.
ProtocolName) and the mapping information about how these runs should be converted to BIDS can be specified
a priori as well as interactively by the researcher – bringing in the missing knowledge that often exists only in his or
her head!

Because all the mapping information can be easily edited with the Graphical User Interface (GUI), BIDScoin requires
no programming knowledge in order to use it.

BIDScoin is developed at the Donders Institute of the Radboud University.

Contents 1

https://bidscoin.readthedocs.io
https://pypi.org/project/bidscoin
https://bids-specification.readthedocs.io/en/v1.5.0/
https://www.gnu.org/licenses/gpl-3.0
http://bidscoin.readthedocs.io/en/latest/?badge=latest
https://github.com/Donders-Institute/bidscoin
https://nifti.nimh.nih.gov/
https://www.json.org/
https://en.wikipedia.org/wiki/Tab-separated_values
http://bids.neuroimaging.io
screenshots.html
https://www.ru.nl/donders/
https://www.ru.nl/english/

BIDScoin, Release 3.5.2

2 Contents

CHAPTER 1

BIDScoin functionality

• [x] DICOM source data

• [x] PAR / REC source data (Philips)

• [] P7 source data (GE)

• [] Nifti source data

• [x] Physiological source data*

• [x] Fieldmaps*

• [x] Multi-echo data*

• [x] Multi-coil data*

• [x] PET data*

• [] Stimulus / behavioural logfiles

• [x] Plug-ins

• [x] Defacing

• [x] Multi-echo combination

* = DICOM source data (tested for Siemens)

Are you a python programmer with an interest in BIDS who knows all about GE and / or
→˓Philips data?
Are you experienced with parsing stimulus presentation log-files? Or do you have
→˓ideas to improve
the this toolkit or its documentation? Have you come across bugs? Then you are highly
→˓encouraged to
provide feedback or contribute to this project on https://github.com/Donders-
→˓Institute/bidscoin.

3

BIDScoin, Release 3.5.2

4 Chapter 1. BIDScoin functionality

CHAPTER 2

Note:

The full BIDScoin documentation is hosted at Read the Docs

Issues can be reported at Github

2.1 Installation

BIDScoin can be installed and should work on Linux, MS Windows and on OS-X computers (this latter option has not
been tested) that satisfy the system requirements:

• dcm2niix

• python 3.6 or higher

2.1.1 Dcm2niix installation

BIDScoin relies on dcm2niix to convert DICOM and PAR/REC files to nifti. Please download and install dcm2niix
yourself according to the instructions. When done, make sure that the path to the dcm2niix binary / executable is set
correctly in the BIDScoin Options in the [path_to_bidscoin]/heuristics/bidsmap_template.yaml
file or in the Site specific / customized template file.

2.1.2 Python 3 installation

BIDScoin is a python package and therefore a python interpreter needs to be present on the system. On Linux this
is usually already the case, but MS Windows users may need to install python themselves. See e.g. this python 3
distribution for instructions. They may also need to install the MS Visual C++ build tools (sorry for this pain).

2.1.3 BIDScoin installation

To install BIDScoin on your system run the following command in a command-terminal (institute users may want to
activate a virtual / conda python environment first):

5

https://bidscoin.readthedocs.io
https://github.com/Donders-Institute/bidscoin/issues
https://www.nitrc.org/plugins/mwiki/index.php/dcm2nii:MainPage
options.html
advanced.html#site-specific-customized-template
https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/windows/
https://visualstudio.microsoft.com/downloads/
https://docs.python.org/3.6/tutorial/venv.html
https://conda.io/docs/user-guide/tasks/manage-environments.html

BIDScoin, Release 3.5.2

$ pip install bidscoin

This will give you the latest stable release of the software. To get the very latest (development) version of the software
you can install the package directly from the github source code repository:

$ pip install git+https://github.com/Donders-Institute/bidscoin

If you do not have git (or any other version control system) installed you can download and unzip the code yourself in
a directory named e.g. bidscoin and run:

$ pip install bidscoin

Updating BIDScoin

Run the pip command as before with the additional --upgrade option:

$ pip install --upgrade bidscoin

Caution:

• The bidsmaps are not garanteed to be compatible between different BIDScoin versions

• After a succesful BIDScoin installation or upgrade, it may be needed to (re)do any adjustments that were
done on the Site specific / customized template file(s) (so make a back-up of these before you upgrade)

2.2 Data preparation

2.2.1 Required source data structure

BIDScoin requires that the source data input folder is organized according to a sub-identifier/
[ses-identifier]/data structure (the ses-identifier subfolder is optional). The data folder can have
various formats, as shown in the following examples:

1. A ‘seriesfolder’ organization. A series folder contains a single data type and are typically acquired in a single
run – a.k.a ‘Series’ in DICOM speak. This is how users receive their data from the (Siemens) scanners at the
DCCN:

sourcedata
|-- sub-001
| |-- ses-mri01
| | |-- 001-localizer
| | | |-- 00001_1.3.12.2.1107.5.2.19.45416.2017121914582956872274162.IMA
| | | |-- 00002_1.3.12.2.1107.5.2.19.45416.2017121914583757650874172.IMA
| | | `-- 00003_1.3.12.2.1107.5.2.19.45416.2017121914583358068374167.IMA
| | |
| | |-- 002-t1_mprage_sag_p2_iso_1.0
| | | |-- 00002_1.3.12.2.1107.5.2.19.45416.2017121915051526005675150.IMA
| | | |-- 00003_1.3.12.2.1107.5.2.19.45416.2017121915051520026075138.IMA
| | | |-- 00004_1.3.12.2.1107.5.2.19.45416.2017121915051515689275130.IMA
| | | [..]
| | [..]

(continues on next page)

6 Chapter 2. Note:

https://github.com/Donders-Institute/bidscoin
advanced.html#site-specific-customized-template
https://www.ru.nl/donders/

BIDScoin, Release 3.5.2

(continued from previous page)

| |
| `-- ses-mri02
| |-- 001-localizer
| | |-- 00001_1.3.12.2.1107.5.2.19.45416.2017121914582956872274162.IMA
| | |-- 00002_1.3.12.2.1107.5.2.19.45416.2017121914583757650874172.IMA
| | `-- 00003_1.3.12.2.1107.5.2.19.45416.2017121914583358068374167.IMA
| [..]
|
|-- sub-002
| `-- ses-mri01
| |-- 001-localizer
| | |-- 00001_1.3.12.2.1107.5.2.19.45416.2017121914582956872274162.IMA
| | |-- 00002_1.3.12.2.1107.5.2.19.45416.2017121914583757650874172.IMA
| | `-- 00003_1.3.12.2.1107.5.2.19.45416.2017121914583358068374167.IMA
| [..]
[..]

2. A ‘DICOMDIR’ organization. A DICOMDIR is dictionary-file that indicates the various places where all the
various DICOM files are stored. DICOMDIRs are often used in clinical settings and may look like:

sourcedata
|-- sub-001
| |-- DICOM
| | `-- 00001EE9
| | `-- AAFC99B8
| | `-- AA547EAB
| | |-- 00000025
| | | |-- EE008C45
| | | |-- EE027F55
| | | |-- EE03D17C
| | | [..]
| | |
| | |-- 000000B4
| | | |-- EE07CCDA
| | | |-- EE0E0701
| | | |-- EE0E200A
| | | [..]
| | [..]
| `-- DICOMDIR
|
|-- sub-002
| [..]
[..]

3. A flat DICOM organization. In a flat DICOM organization all the DICOM files of all the different Series are
simply put in one large directory. This organization is sometimes used when exporting data in clinical settings:

sourcedata
|-- sub-001
| `-- ses-mri01
| |-- IM_0001.dcm
| |-- IM_0002.dcm
| |-- IM_0003.dcm
| [..]
|
|-- sub-002

(continues on next page)

2.2. Data preparation 7

BIDScoin, Release 3.5.2

(continued from previous page)

| `-- ses-mri01
| |-- IM_0001.dcm
| |-- IM_0002.dcm
| |-- IM_0003.dcm
| [..]
[..]

4. A PAR/REC organization. All PAR/REC(/XML) files of all the different Series are put in one directory. This
organization is how users often export their data from Philips scanners in research settings:

sourcedata
|-- sub-001
| `-- ses-mri01
| |-- TCHC_066_1_WIP_Hanneke_Block_2_SENSE_4_1.PAR
| |-- TCHC_066_1_WIP_Hanneke_Block_2_SENSE_4_1.REC
| |-- TCHC_066_1_WIP_IDED_SENSE_6_1.PAR
| |-- TCHC_066_1_WIP_IDED_SENSE_6_1.REC
| |-- TCHC_066_1_WIP_Localizer_CLEAR_1_1.PAR
| |-- TCHC_066_1_WIP_Localizer_CLEAR_1_1.REC
| [..]
|
|-- sub-002
| `-- ses-mri01
| |-- TCHC_066_1_WIP_Hanneke_Block_2_SENSE_4_1.PAR
| |-- TCHC_066_1_WIP_Hanneke_Block_2_SENSE_4_1.REC
| |-- TCHC_066_1_WIP_IDED_SENSE_6_1.PAR
| |-- TCHC_066_1_WIP_IDED_SENSE_6_1.REC
| |-- TCHC_066_1_WIP_Localizer_CLEAR_1_1.PAR
| |-- TCHC_066_1_WIP_Localizer_CLEAR_1_1.REC
| [..]
[..]

Note: You can store your session data in any of the above data organizations as zipped (.zip) or tarzipped (e.g.
.tar.gz) archive files. BIDScoin workflow tools will unpack/unzip those archive files in a temporary folder and
will process your session‘‘ data‘‘ from there. The BIDScoin tools will run dicomsort in a temporary folder for
flat/DICOMDIR data to sort them in seriesfolders. BIDScoin tools that work from a temporary folder has the downsde
of getting a speed penalty. Also note that privacy-sensitive data samples will then be stored in [bidsfolder]/
code/bidscoin/provenance.

2.2.2 Data management utilities

dicomsort

The dicomsort command-line tool is a utility to move your flat- or DICOMDIR-organized files (see above) into a
‘seriesfolder’ organization. This can be useful to organise your source data in a more convenient and human readable
way, as DICOMDIR or flat DICOM directories can often be hard to comprehend. The BIDScoin tools will run
icomsort in a temporary folder if your data is not already organised in series-folders, so in principle you don’t really
need to run it yourself. Running dicomsort beforehand does, however, give you more flexibility in handling special
cases that are not handled properly and it can also give you a speed benefit.

usage: dicomsort [-h] [-i SUBPREFIX] [-j SESPREFIX] [-f FIELDNAME] [-r]
[-e EXT] [-n] [-p PATTERN] [-d]

(continues on next page)

8 Chapter 2. Note:

workflow.html

BIDScoin, Release 3.5.2

(continued from previous page)

dicomsource

Sorts and / or renames DICOM files into local subdirectories with a (3-digit)
SeriesNumber-SeriesDescription directory name (i.e. following the same listing
as on the scanner console)

positional arguments:
dicomsource The name of the root folder containing the

dicomsource/[sub/][ses/]dicomfiles and / or the
(single session/study) DICOMDIR file

optional arguments:
-h, --help show this help message and exit
-i SUBPREFIX, --subprefix SUBPREFIX

Provide a prefix string for recursive searching in
dicomsource/subject subfolders (e.g. "sub") (default:
None)

-j SESPREFIX, --sesprefix SESPREFIX
Provide a prefix string for recursive searching in
dicomsource/subject/session subfolders (e.g. "ses")
(default: None)

-f FIELDNAME, --fieldname FIELDNAME
The dicomfield that is used to construct the series
folder name ("SeriesDescription" and "ProtocolName"
are both used as fallback) (default:
SeriesDescription)

-r, --rename Flag to rename the DICOM files to a PatientName_Series
Number_SeriesDescription_AcquisitionNumber_InstanceNum
ber scheme (recommended for DICOMDIR data) (default:
False)

-e EXT, --ext EXT The file extension after sorting (empty value keeps
the original file extension), e.g. ".dcm" (default:)

-n, --nosort Flag to skip sorting of DICOM files into SeriesNumber-
SeriesDescription directories (useful in combination
with -r for renaming only) (default: False)

-p PATTERN, --pattern PATTERN
The regular expression pattern used in
re.match(pattern, dicomfile) to select the dicom files
(default: .*\.(IMA|dcm)$)

-d, --dryrun Add this flag to just print the dicomsort commands
without actually doing anything (default: False)

examples:
dicomsort /project/3022026.01/raw
dicomsort /project/3022026.01/raw --subprefix sub
dicomsort /project/3022026.01/raw --subprefix sub-01 --sesprefix ses
dicomsort /project/3022026.01/raw/sub-011/ses-mri01/DICOMDIR -r -e .dcm

rawmapper

Another command-line utility that can be helpful in organizing your source data is rawmapper. This utility can
show you the overview (map) of all the values of DICOM-fields of interest in your data-set and, optionally, use these
fields to rename your source data sub-folders (this can be handy e.g. if you manually entered subject-identifiers as
[Additional info] at the scanner console and you want to use these to rename your subject folders).

2.2. Data preparation 9

BIDScoin, Release 3.5.2

usage: rawmapper [-h] [-s SESSIONS [SESSIONS ...]]
[-d DICOMFIELD [DICOMFIELD ...]] [-w WILDCARD]
[-o OUTFOLDER] [-r] [-n SUBPREFIX] [-m SESPREFIX]
[--dryrun]
sourcefolder

Maps out the values of a dicom field of all subjects in the sourcefolder, saves
the result in a mapper-file and, optionally, uses the dicom values to rename
the sub-/ses-id's of the subfolders. This latter option can be used, e.g.
when an alternative subject id was entered in the [Additional info] field
during subject registration (i.e. stored in the PatientComments dicom field)

positional arguments:
sourcefolder The source folder with the raw data in

sub-#/ses-#/series organisation

optional arguments:
-h, --help show this help message and exit
-s SESSIONS [SESSIONS ...], --sessions SESSIONS [SESSIONS ...]

Space separated list of selected sub-#/ses-# names /
folders to be processed. Otherwise all sessions in the
bidsfolder will be selected (default: None)

-d DICOMFIELD [DICOMFIELD ...], --dicomfield DICOMFIELD [DICOMFIELD ...]
The name of the dicomfield that is mapped / used to
rename the subid/sesid foldernames (default:
['PatientComments'])

-w WILDCARD, --wildcard WILDCARD
The Unix style pathname pattern expansion that is used
to select the series from which the dicomfield is
being mapped (can contain wildcards) (default: *)

-o OUTFOLDER, --outfolder OUTFOLDER
The mapper-file is normally saved in sourcefolder or,
when using this option, in outfolder (default: None)

-r, --rename If this flag is given sub-subid/ses-sesid directories
in the sourcefolder will be renamed to sub-dcmval/ses-
dcmval (default: False)

-n SUBPREFIX, --subprefix SUBPREFIX
The prefix common for all the source subject-folders
(default: sub-)

-m SESPREFIX, --sesprefix SESPREFIX
The prefix common for all the source session-folders
(default: ses-)

--dryrun Add this flag to dryrun (test) the mapping or renaming
of the sub-subid/ses-sesid directories (i.e. nothing
is stored on disk and directory names are not actually
changed)) (default: False)

examples:
rawmapper /project/3022026.01/raw/
rawmapper /project/3022026.01/raw -d AcquisitionDate
rawmapper /project/3022026.01/raw -s sub-100/ses-mri01 sub-126/ses-mri01
rawmapper /project/3022026.01/raw -r -d ManufacturerModelName AcquisitionDate --

→˓dryrun
rawmapper raw/ -r -s sub-1*/* sub-2*/ses-mri01 --dryrun
rawmapper -d EchoTime -w *fMRI* /project/3022026.01/raw

Note: If these data management utilities do not satisfy your needs, then have a look at this reorganize_dicom_files

10 Chapter 2. Note:

https://github.com/robertoostenveld/bids-tools/blob/master/doc/reorganize_dicom_files.md

BIDScoin, Release 3.5.2

tool.

2.3 The BIDScoin workflow

With a sufficiently organized source data folder, the data conversion to BIDS can be performed by running the (1a)
the bidsmapper, (1b) the bidseditor and (2) the bidscoiner command-line tools. The bidsmapper starts
by making a map of the different kind of datatypes (scans) in your source dataset, which you can then edit with the
bidseditor. The bidscoiner reads this so-called study bidsmap, which tells it how exactly to convert (“coin”) the source
data into a BIDS data repository.

Fig. 1: Creation and application of a study bidsmap

By default (but see the -i option of the bidsmapper below), step 1a automatically launches step 1b, so in it’s simplest
form, all you need to do to convert your raw source data into BIDS is to run two simple commands, e.g.:

$ bidsmapper sourcefolder bidsfolder
$ bidscoiner sourcefolder bidsfolder

If you add new subjects all you need to do is re-run the bidscoiner – unless the scan protocol was changed, then you
also need to first re-run the bidsmapper to add the new samples to the study bidsmap.

2.3.1 Step 1a: Running the bidsmapper

usage: bidsmapper [-h] [-b BIDSMAP] [-t TEMPLATE] [-n SUBPREFIX]
[-m SESPREFIX] [-i {0,1,2}] [-v]
sourcefolder bidsfolder

Creates a bidsmap.yaml YAML file in the bidsfolder/code/bidscoin that maps the
information from all raw source data to the BIDS labels. You can check and edit
the bidsmap file with the bidseditor (but also with any text-editor) before
passing it to the bidscoiner. See the bidseditor help for more information and
useful tips for running the bidsmapper in interactive mode (the default).

positional arguments:
sourcefolder The study root folder containing the raw data in

sub-#/[ses-#/]data subfolders (or specify --subprefix
and --sesprefix for different prefixes)

(continues on next page)

2.3. The BIDScoin workflow 11

preparation.html

BIDScoin, Release 3.5.2

(continued from previous page)

bidsfolder The destination folder with the (future) bids data and
the bidsfolder/code/bidscoin/bidsmap.yaml output file

optional arguments:
-h, --help show this help message and exit
-b BIDSMAP, --bidsmap BIDSMAP

The bidsmap YAML-file with the study heuristics. If
the bidsmap filename is relative (i.e. no "/" in the
name) then it is assumed to be located in
bidsfolder/code/bidscoin. Default: bidsmap.yaml

-t TEMPLATE, --template TEMPLATE
The bidsmap template with the default heuristics (this
could be provided by your institute). If the bidsmap
filename is relative (i.e. no "/" in the name) then it
is assumed to be located in bidsfolder/code/bidscoin.
Default: bidsmap_dccn.yaml

-n SUBPREFIX, --subprefix SUBPREFIX
The prefix common for all the source subject-folders.
Default: 'sub-'

-m SESPREFIX, --sesprefix SESPREFIX
The prefix common for all the source session-folders.
Default: 'ses-'

-s, --store Flag to store the provenance data samples in the
bidsfolder/'code'/'provenance' folder

-i {0,1,2}, --interactive {0,1,2}
{0}: The sourcefolder is scanned for different kinds
of scans without any user interaction. {1}: The
sourcefolder is scanned for different kinds of scans
and, when finished, the resulting bidsmap is opened
using the bidseditor. {2}: As {1}, except that already
during scanning the user is asked for help if a new
and unknown run is encountered. This option is most
useful when re-running the bidsmapper (e.g. when the
scan protocol was changed since last running the
bidsmapper). Default: 1

-v, --version Show the installed version and check for updates

examples:
bidsmapper /project/foo/raw /project/foo/bids
bidsmapper /project/foo/raw /project/foo/bids -t bidsmap_template

After the source data has been scanned, the bidsmapper will automatically launch step 1b. For a fully automated
workflow users can skip this interactive step using the -i option (see above).

Tip: The default template bidsmap (-t bidsmap_dccn) is customized for acquisitions at the DCCN. If this
bidsmap is not working well for you, consider adapting it to your needs so that the bidsmapper can recognize more of
your scans and map them to BIDS the way you prefer.

2.3.2 Step 1b: Running the bidseditor

usage: bidseditor [-h] [-b BIDSMAP] [-t TEMPLATE] [-d DATAFORMAT]
[-n SUBPREFIX] [-m SESPREFIX]
bidsfolder

(continues on next page)

12 Chapter 2. Note:

advanced.html#site-specific-customized-template

BIDScoin, Release 3.5.2

(continued from previous page)

This tool launches a graphical user interface for editing the bidsmap.yaml file
that is produced by the bidsmapper. The user can fill in or change the BIDS labels
for entries that are unidentified or sub-optimal, such that meaningful and nicely
readable BIDS output names will be generated. The saved bidsmap.yaml output file
will be used by the bidscoiner to actually convert the source data to BIDS.

You can hoover with your mouse over items to get help text (pop-up tooltips).

positional arguments:
bidsfolder The destination folder with the (future) bids data

optional arguments:
-h, --help show this help message and exit
-b BIDSMAP, --bidsmap BIDSMAP

The bidsmap YAML-file with the study heuristics. If
the bidsmap filename is relative (i.e. no "/" in the
name) then it is assumed to be located in
bidsfolder/code/bidscoin. Default: bidsmap.yaml

-t TEMPLATE, --template TEMPLATE
The bidsmap template with the default heuristics (this
could be provided by your institute). If the bidsmap
filename is relative (i.e. no "/" in the name) then it
is assumed to be located in bidsfolder/code/bidscoin.
Default: bidsmap_dccn.yaml

-d DATAFORMAT, --dataformat DATAFORMAT
The format of the source data, e.g. DICOM or PAR.
Default: DICOM

-n SUBPREFIX, --subprefix SUBPREFIX
The prefix common for all the source subject-folders.
Default: 'sub-'

-m SESPREFIX, --sesprefix SESPREFIX
The prefix common for all the source session-folders.
Default: 'ses-'

examples:
bidseditor /project/foo/bids
bidseditor /project/foo/bids -t bidsmap_template.yaml
bidseditor /project/foo/bids -b my/custom/bidsmap.yaml

As shown below, the main window of the bidseditor opens with the BIDS map tab that contains a list of input
samples that uniquely represents all the different files that are present in the source folder, together with the asso-
ciated BIDS output name. The path in the BIDS output name is shown in red if the modality is not part of
the BIDS standard, striked-out gray when the runs will be ignored in the conversion to BIDS, otherwise it is colored
green. Double clicking the sample (DICOM) filename opens an inspection window with the full header information
(double clicking sample filenames works throughout the GUI).

The user can click the Edit button for each list item to open a new edit window, as show below. In this interface, the
right BIDS Modality (drop down menu) and the suffix label (drop down menu) can set correctly, after which the
associated BIDS Entities can be edited (double click black items). As a result, the new BIDS Output name is
then shown in the bottom text field (green text indicates that the name is BIDS valid). This is a preview of the BIDS
output data, if that looks satisfactory, the user can store this mapping to the bidsmap and return to the main window by
clicking the OK button. Editing the source attributes of a study bidsmap is usually not necessary and adviced against.
See The bidsmap explained for more explanation about the special bidsmap feautures.

Finally, if all BIDS output names in the main window are fine, the user can click on the Save button and proceed
with running the bidscoiner tool. Note that the bidsmapper and bidseditor don’t do anything except reading from and

2.3. The BIDScoin workflow 13

bidsmap.html#special-features

BIDScoin, Release 3.5.2

Fig. 2: The main window with an overview of all the bidsmap run items

Fig. 3: The edit window for customizing a bidsmap run item, showing the acq value being set to phantom

14 Chapter 2. Note:

BIDScoin, Release 3.5.2

writing to the bidsmap.yaml file.

Fieldmaps

The way fieldmaps are acquired and stored varies considerably between sequences and manufacturers, and may there-
fore require special treatment. For instance, it could be that you have magnitude1 and magnitude2 data in one
series-folder (which is what Siemens can do). In that case you should select the magnitude1 suffix and let bid-
scoiner automatically pick up the other magnitude image during runtime. The same holds for phase1 and phase2
data. The suffix magnitude can be selected for sequences that save fielmaps directly. See the BIDS specification for
more details on fieldmap suffixes.

Fieldmaps are typically acquired to be applied to specific other scans from the same session. If this is the case then you
should indicate this in the IntendedFor field, either using a single search string or multiple dynamic strings to select
the runs that have that string pattern in their BIDS file name. For instance you can use task to select all functional
runs or use <<Stop*Go><Reward>> to select “Stop1Go”-, “Stop2Go”- and “Reward”-runs. NB: bidsapps may not
use the fieldmap at all if this field is left empty!

2.3.3 Step 2: Running the bidscoiner

usage: bidscoiner [-h] [-p PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]] [-f]
[-s] [-b BIDSMAP] [-n SUBPREFIX] [-m SESPREFIX] [-v]
sourcefolder bidsfolder

Converts ("coins") datasets in the sourcefolder to nifti / json / tsv datasets in the
bidsfolder according to the BIDS standard. Check and edit the bidsmap.yaml file to
your needs using the bidseditor tool before running this function. You can run
bidscoiner after all data is collected, or run / re-run it whenever new data has
been added to the source folder (presuming the scan protocol hasn't changed). If you
delete a (subject/) session folder from the bidsfolder, it will be re-created from the
sourcefolder the next time you run the bidscoiner. Image tags indicating properties
such as echo-number or complex data can be appended to the "acq" value if the BIDS
datatype does not provide for this (e.g. "sub-01_acq-MEMPRAGE_T1w.nii" becomes
"sub-01_acq-MEMPRAGEe1_T1w.nii")

Provenance information, warnings and error messages are stored in the
bidsfolder/code/bidscoin/bidscoiner.log file.

positional arguments:
sourcefolder The source folder containing the raw data in

sub-#/[ses-#]/data format (or specify --subprefix and
--sesprefix for different prefixes)

bidsfolder The destination / output folder with the bids data

optional arguments:
-h, --help show this help message and exit
-p PARTICIPANT_LABEL [PARTICIPANT_LABEL ...], --participant_label PARTICIPANT_LABEL

→˓[PARTICIPANT_LABEL ...]
Space seperated list of selected sub-# names / folders
to be processed (the sub- prefix can be removed).
Otherwise all subjects in the sourcefolder will be
selected

-f, --force If this flag is given subjects will be processed,
regardless of existing folders in the bidsfolder.
Otherwise existing folders will be skipped

-s, --skip_participants

(continues on next page)

2.3. The BIDScoin workflow 15

https://bids-specification.readthedocs.io/en/stable/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#fieldmap-data
bidsmap.html#special-features

BIDScoin, Release 3.5.2

(continued from previous page)

If this flag is given those subjects that are in
particpants.tsv will not be processed (also when the
--force flag is given). Otherwise the participants.tsv
table is ignored

-b BIDSMAP, --bidsmap BIDSMAP
The bidsmap YAML-file with the study heuristics. If
the bidsmap filename is relative (i.e. no "/" in the
name) then it is assumed to be located in
bidsfolder/code/bidscoin. Default: bidsmap.yaml

-n SUBPREFIX, --subprefix SUBPREFIX
The prefix common for all the source subject-folders.
Default: 'sub-'

-m SESPREFIX, --sesprefix SESPREFIX
The prefix common for all the source session-folders.
Default: 'ses-'

-v, --version Show the installed version and check for updates

examples:
bidscoiner /project/foo/raw /project/foo/bids
bidscoiner -f /project/foo/raw /project/foo/bids -p sub-009 sub-030

Tip: Check your json sidecar files of your fieldmaps, in particular see if they have the expected IntendedFor
values.

Note: The provenance of the produced BIDS data-sets is stored in the [bidsfolder]/code/bidscoin/
bidscoiner.log file. This file is also very useful for debugging / tracking down bidscoin issues.

2.4 The bidsmap explained

2.4.1 Structure and content

Generally speaking, a bidsmap contains a collection of key-value dictionaries that define how different source data
runs (e.g. a T1w- or a T2w-scan) should map onto BIDS filenames. As illustrated in the figure below (but see
also the screenshot of the edit window), a run-item consists of provenance, attributes and bids key-value
dictionaries:

• The provenance item contains the pathname of a source data sample that is representative for this run.

• The attributes dictionary contains keys and values that are properties of the source data and that are (pre-)
selected to uniquely identify a run item. A source data sample is positively identified only if all specified (non-
empty) values match.

• The bids dictionary contains key-value pairs that are used to construct the associated BIDS output filename.

A bidsmap has a BIDScoin Options and a PlugIns section, followed by source modality sections (e.g.
DICOM, PAR, P7, Nifti, FileSystem). Within a source modality section there sub-sections for the
participant_label and session_label, and for the BIDS datatypes (anat, func, dwi, fmap, pet, beh)
plus the additional extra_data datatype. BIDScoin tools will go through the list of run items of a datatype from
top to bottom until they come across an item that matches with the data sample at hand. At that point a bidsmapping
is established.

16 Chapter 2. Note:

screenshots.html

BIDScoin, Release 3.5.2

Fig. 4: A snippet of a study bidsmap.yaml file, showing a DICOM section with a few run items in the anat
subsection

2.4. The bidsmap explained 17

BIDScoin, Release 3.5.2

2.4.2 From template to study

A bidsmap can either be a template bidsmap or a study bidsmap. The difference between them is that a template
bidsmap is a comprehensive set of pre-defined run items and serves as an input for the bidsmapper to automatically
make a first version of a study bidsmap. The study bidsmap is thus derived from the template bidsmap and contains
only those run items that are present in the data. The study bidsmap can be interactively edited with knowledge that
is specific to a study and that cannot be extracted from the data (e.g. set a task value to “rest”). A user normally
doesn’t have to interact with the template bidsmap, but it is sure possible to create your own.

Fig. 5: Creation and application of a study bidsmap

2.4.3 Special bidsmap features

• Source attribute wildcards. Source attribute values can contain Unix shell-style * wildcards to facilitate
more liberal run matching. For instance you can use SeriesDescription: '*MPRAGE*' to match all
MPRAGE DICOM series as they come from your MRI scanner.

• Source attribute list. Instead of a normal string, a source attribute value can also be a list of strings, in which
case a match is positive if any of the list items matches with the source attribute of the run. For instance
SequenceName: ['*epfid*', 'fm2d2r'] will liberally match all DICOM sequences with that
have epfid in their SequenceName and it will strictly match on fm2d2r.

• Dynamic bids value. Bids values can be static, in which case the value is just a normal string, or dynamic,
when the string is enclosed with pointy brackets. In case of single pointy brackets the bids value will be replaced
during bidsmapper, bidseditor and bidscoiner runtime by the value of the source attribute. For instance acq:
<MRAcquisitionType><SeriesDescription> will be replaced by acq: 3DMPRAGE. In case of
double enclosed pointy brackets, the value will be updated only during bidscoiner runtime – this is useful for
bids values that are subject/session dependent. For instance run: <<1>> will be replaced with run: 1
or e.g. increased to run: 2 if a file with that bidsname already exists.

• Bids value list. Instead of a normal string, a bids value can also be a list of strings, with the last list item
being the (zero-based) list index that selects the final bids value. For instance the list ['mag', 'phase',
'real', 'imag', 1] would select phase as a value. A bids value list is made visible in the bidseditor as
a drop-down menu.

The special bidsmap features are most useful when added to template bidsmaps.

18 Chapter 2. Note:

advanced.html#site-specific-customized-template
https://docs.python.org/3/library/fnmatch.html

BIDScoin, Release 3.5.2

2.5 Finishing up

After a successful run of bidscoiner, the work to convert your data in a fully compliant BIDS dataset is unfortunately
not yet fully over and, depending on the complexity of your data-set, additional tools may need to be run and meta-data
may need to be entered manually (not everything can be automated).

2.5.1 Adding meta-data

For instance, you should update the content of the dataset_description.json and README files in your bids
folder and you may need to provide e.g. additional *_scans.tsv,*_sessions.tsv or participants.json
files (see the BIDS specification for more information). Moreover, if you have behavioural log-files you will find that
BIDScoin does not (yet) support converting these into BIDS compliant *_events.tsv/json files (advanced users
are encouraged to use the bidscoiner plug-in possibility and write their own log-file parser).

2.5.2 Data sharing utilities

Multi-echo combination

Before sharing or pre-processing their images, users may want to combine the separate the individual echos of multi-
echo MRI acquisitions. The echcombine-tool is a wrapper around mecombine that writes BIDS valid output.

usage: echocombine [-h] [-p PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[-o {fmap,anat,func,dwi,beh,pet,extra_data,derivatives}]
[-a {PAID,TE,average}] [-w [WEIGHTS [WEIGHTS ...]]]
bidsfolder pattern

A wrapper around the 'mecombine' multi-echo combination tool (https://github.com/
→˓Donders-Institute/multiecho).

This wrapper is fully BIDS-aware (a 'bidsapp') and writes BIDS compliant output

positional arguments:
bidsfolder The bids-directory with the (multi-echo) subject data
pattern Globlike recursive search pattern (relative to the

subject/session folder) to select the first echo of
the images that need to be combined, e.g.
'*task-*echo-1*'

optional arguments:
-h, --help show this help message and exit
-p PARTICIPANT_LABEL [PARTICIPANT_LABEL ...], --participant_label PARTICIPANT_LABEL

→˓[PARTICIPANT_LABEL ...]
Space separated list of sub-# identifiers to be
processed (the sub- prefix can be left out). If not
specified then all sub-folders in the bidsfolder will
be processed (default: None)

-o {fmap,anat,func,dwi,beh,pet,extra_data,derivatives}, --output {fmap,anat,func,
→˓dwi,beh,pet,extra_data,derivatives}

A string that determines where the output is saved. It
can be the name of a BIDS modality folder, such as
'func', or of the derivatives folder, i.e.
'derivatives'. If output = [the name of the input
modality folder] then the original echo images are
replaced by one combined image. If output is left

(continues on next page)

2.5. Finishing up 19

http://bids.neuroimaging.io/bids_spec.pdf
index.html#bidscoin-functionality
advanced.html#plugins

BIDScoin, Release 3.5.2

(continued from previous page)

empty then the combined image is saved in the input
modality folder and the original echo images are moved
to the extra_data folder (default: None)

-a {PAID,TE,average}, --algorithm {PAID,TE,average}
Combination algorithm (default: TE)

-w [WEIGHTS [WEIGHTS ...]], --weights [WEIGHTS [WEIGHTS ...]]
Weights for each echo (default: None)

examples:
echocombine /project/3017065.01/bids func/*task-stroop*echo-1*
echocombine /project/3017065.01/bids *task-stroop*echo-1* -p 001 003
echocombine /project/3017065.01/bids func/*task-*echo-1* -o func
echocombine /project/3017065.01/bids func/*task-*echo-1* -o derivatives -w 13 26 39

→˓52
echocombine /project/3017065.01/bids func/*task-*echo-1* -a PAID

Defacing

Before sharing or pre-processing their images, users may want to deface their anatomical MRI acquisitions as to
protect the privacy of their subjects. The deface-tool is a wrapper around pydeface that writes BIDS valid output.

usage: deface [-h] [-p PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[-o {fmap,anat,func,dwi,beh,pet,extra_data,derivatives}] [-c]
[-n NATIVESPEC] [-a ARGS]
bidsfolder pattern

A wrapper around the 'pydeface' defacing tool (https://github.com/poldracklab/
→˓pydeface).

This wrapper is fully BIDS-aware (a 'bidsapp') and writes BIDS compliant output

positional arguments:
bidsfolder The bids-directory with the (multi-echo) subject data
pattern Globlike search pattern (relative to the

subject/session folder) to select the images that need
to be defaced, e.g. 'anat/*_T1w*'

optional arguments:
-h, --help show this help message and exit
-p PARTICIPANT_LABEL [PARTICIPANT_LABEL ...], --participant_label PARTICIPANT_LABEL

→˓[PARTICIPANT_LABEL ...]
Space separated list of sub-# identifiers to be
processed (the sub- prefix can be left out). If not
specified then all sub-folders in the bidsfolder will
be processed (default: None)

-o {fmap,anat,func,dwi,beh,pet,extra_data,derivatives}, --output {fmap,anat,func,
→˓dwi,beh,pet,extra_data,derivatives}

A string that determines where the defaced images are
saved. It can be the name of a BIDS modality folder,
such as 'anat', or of the derivatives folder, i.e.
'derivatives'. If output is left empty then the
original images are replaced by the defaced images
(default: None)

-c, --cluster Flag to submit the deface jobs to the high-performance
compute (HPC) cluster (default: False)

(continues on next page)

20 Chapter 2. Note:

BIDScoin, Release 3.5.2

(continued from previous page)

-n NATIVESPEC, --nativespec NATIVESPEC
DRMAA native specifications for submitting deface jobs
to the HPC cluster (default: -l
walltime=00:30:00,mem=1gb)

-a ARGS, --args ARGS Additional arguments (in dict/json-style) that are
passed to pydeface. See examples for usage (default:
{})

examples:
deface /project/3017065.01/bids anat/*_T1w*
deface /project/3017065.01/bids anat/*_T1w* -p 001 003 -o derivatives
deface /project/3017065.01/bids anat/*_T1w* -n "-l walltime=00:60:00,mem=2gb"
deface /project/3017065.01/bids anat/*_T1w* -a '{"cost": "corratio", "verbose": ""}'

2.5.3 BIDS validation

If all of the above work is done, you can (and should) run the web-based bidsvalidator to check for inconsistencies or
missing files in your bids data-set (NB: the bidsvalidator also exists as a command-line tool).

2.6 Options

BIDScoin has different options and settings (see below) that can be adjusted per study bidsmap. You can use a text
editor to edit the bidsmap template [path_to_bidscoin]/heuristics/bidsmap_template.yaml if you
want to adjust the default)

Fig. 6: The bidseditor options window with the different BIDScoin settings

2.6. Options 21

https://bids-standard.github.io/bids-validator/
https://github.com/bids-standard/bids-validator

BIDScoin, Release 3.5.2

2.6.1 BIDScoin

• version: should correspond with the version in ../bidscoin/version.txt

• bidsignore: Semicolon-separated list of entries that are added to the .bidsignore file (for more info, see
BIDS specifications), e.g.:

– extra_data/;pet/;myfile.txt;yourfile.csv

2.6.2 dcm2niix

The nifti- and json-files are generated with dcm2niix. Here you can adjust how dcm2niix is used:

• path: Command to set the path to dcm2niix, e.g.:

– module add dcm2niix/1.0.20180622; (note the semi-colon at the end)

– PATH=/opt/dcm2niix/bin:$PATH; (note the semi-colon at the end)

– /opt/dcm2niix/bin/ (note the slash at the end)

– '\"C:\\Program Files\\dcm2niix\"' (note the quotes to deal with the whitespace)

• args: Argument string that is passed to dcm2niix. Click [Test] and see the terminal output for usage

Tip: SPM users may want to use ‘-z n’, which produces unzipped nifti’s

2.6.3 Plugins

BIDScoin provides the possibility for researchers to write custom python functions that will be executed at bidsmapper
and bidscoiner runtime. To use this functionality, enter the name of the module (default location is the plugins-folder;
otherwise the full path must be provided) in the bidsmap dictionary file to import the plugin functions. See advanced
usage for more details.

2.7 Advanced usage

2.7.1 Site specific / customized template

The run-items in the default template bidsmap (named bidsmap_template.yaml) have empty / non-
matching source attributes, and therefore the bidsmapper will not make any guesses about BIDS datatypes
and run-items. As a result, it will classify all runs as extra_data, leaving all the subsequent bidseditor
decision making to the user. One alternative is to use the much more intelligent bidsmap_dccn.yaml
template bidsmap. This bidsmap may work much better but it may also make wrong suggestions, since it
is tailored to the MR acquisitions at the Donders Institute. To improve that and to have BIDScoin convert
your studies in a better way, you may consider creating and using your own customized template bidsmap.

Tip: To create your own template bidsmap you can probably best make a copy of the DCCN template
([path_to_bidscoin]/heuristics/bidsmap_dccn.yaml) as a starting point and adapt it to your needs.
If you want to use different source attributes to improve run identifications, then beware that the attribute values should
not vary between different repeats of the data acquision. Otherwise the number of run-items in the bidsmap will not

22 Chapter 2. Note:

https://github.com/rordenlab/dcm2niix
advanced.html#plugins
advanced.html#plugins

BIDScoin, Release 3.5.2

be a shortlist of the different acquisition protocols in your study, but will become a lengthy list that is proportional to
the number of subjects and sessions.

Editing the template

1. Using the bidseditor. This is the easiest way to create a bidsmap template since it uses only a GUI and doesn’t
require in-depth knowledge of bidsmaps and YAML files. If you have a run item in your study that you would
like to be automatically mapped in other / future studies you can simply append that run to the standard or to
a custom template bidsmap by editing it to your needs and click the Export button (see below). Note that
you should first empty the source attribute values (e.g. EchoTime) that vary across repeats of the same run.
With the GUI you can still use advanced features, such as Unix shell-style wildcards in the values of the source
attributes (see left panel), or such as using lists of attribute values (of which either one can match), or simply
empty fields to ignore the item. The main limitation of using the GUI is that the run items are always appended
to a bidsmap template, meaning that they are last in line and will be used only if no other item in the template
matches. It also means that like this you cannot edit the already existing run items in the bidsmap. Another
(smaller) limitation is that with the GUI you cannot make usage of YAML anchors and references, yielding a
less clearly formatted bidsmap that is harder to maintain. Both limitations are overcome when directly editing
the template bidsmap yourself using a text editor (see next point).

Fig. 7: The edit window with the option to export the customized mapping of run a item

2. Using a text editor. This is the most powerful way to create or modify a bidsmap template but requires
more indepth knowledge of YAML and of how BIDScoin identifies different acquisitions in a protocol
given a bidsmap. How you can customize your template is well illustrated by the DCCN template bidsmap
([path_to_bidscoin]/heuristics/bidsmap_dccn.yaml). If you open that template, there are a
few things to take notice of (as shown in the template snippet below). First, you can see that the DCCN template
makes use of YAML anchors and aliases (to make maintanance more sustainable). The second thing to notice is
that, of the first run, all values of the attribute dictionary are empty, meaning that it won’t match any run / will
be ignored. In that way, however, the subsequent runs that alias (<<: *anatattributes_dicom) this

2.7. Advanced usage 23

https://docs.python.org/3/library/fnmatch.html
http://yaml.org/
https://blog.daemonl.com/2016/02/yaml.html

BIDScoin, Release 3.5.2

anchor (&anatattributes_dicom) will inherit only the keys and can inject their own values, as shown in
the second run. The first run of each modality sub-section (like anat) also serves as the default bidsmapping
when users manually overrule / change the bids modality using the bidseditor GUI.

anat: # ----------------------- All anatomical runs --------------------
- provenance: ~ # The fullpath name of the DICOM file from
→˓which the attributes are read. Serves also as a look-up key to find a run in the
→˓bidsmap
attributes: &anat_dicomattr
Modality: ~
ProtocolName: ~
SeriesDescription: ~
ImageType: ~
SequenceName: ~
SequenceVariant: ~
ScanningSequence: ~
MRAcquisitionType: ~
SliceThickness: ~
FlipAngle: ~
EchoNumbers: ~
EchoTime: ~
RepetitionTime: ~
PhaseEncodingDirection: ~

bids: &anat_dicoment_nonparametric # See: schema/datatypes/anat.yaml
acq: <SeriesDescription>
ce: ~
rec: ~
run: <<1>>
part: ['', 'mag', 'phase', 'real', 'imag', 0]
suffix: T1w

- provenance: ~
attributes:
<<: *anat_dicomattr
SeriesDescription: ['*mprage*', '*MPRAGE*', '*MPRage*', '*t1w*', '*T1W*', '*T1w*',

→˓ '*T1*']
MRAcquisitionType: 3D

bids: *anat_dicoment_nonparametric
- provenance: ~

attributes:
<<: *anat_dicomattr
SeriesDescription: ['*t2w*', '*T2w*', '*T2W*', '*T2*']
SequenceVariant: "['SK', 'SP']"

bids:
<<: *anat_dicoment_nonparametric
suffix: T2w

Snippet from the ‘‘bidsmap_dccn.yaml‘‘ template, showing a DICOM section with the first two run items in the anat
subsection

2.7.2 Plugins

BIDScoin has the option to import plugins to further automate / complete the conversion from source data to BIDS. The
plugin takes is called each time the BIDScoin tool has finished processing a run or session, with arguments containing
information about the run or session, as shown in the plugin example code below. The functions in the plugin module
should be named bidsmapper_plugin to be called by bidsmapper and bidscoiner_plugin to be called by
bidscoiner.

24 Chapter 2. Note:

workflow.html#step-1b-running-the-bidseditor

BIDScoin, Release 3.5.2

import logging
from pathlib import Path

LOGGER = logging.getLogger(f'bidscoin.{Path(__file__).stem}')

def bidsmapper_plugin(seriesfolder: Path, bidsmap: dict, bidsmap_template: dict) ->
→˓dict:

"""
The plugin to map info onto bids labels

:param seriesfolder: The full-path name of the raw-data series folder
:param bidsmap: The study bidsmap
:param bidsmap_template: Full BIDS heuristics data structure, with all options,

→˓ BIDS labels and attributes, etc
:return: The study bidsmap with new entries in it
"""

LOGGER.debug(f'This is a bidsmapper demo-plugin working on: {seriesfolder}')
return bidsmap

def bidscoiner_plugin(session: Path, bidsmap: dict, bidsfolder: Path, personals:
→˓dict) -> None:

"""
The plugin to cast the series into the bids folder

:param session: The full-path name of the subject/session raw data source
→˓folder

:param bidsmap: The full mapping heuristics from the bidsmap YAML-file
:param bidsfolder: The full-path name of the BIDS root-folder
:param personals: The dictionary with the personal information
:return: Nothing
"""

LOGGER.debug(f'This is a bidscoiner demo-plugin working on: {session} ->
→˓{bidsfolder}')

Plugin example code

2.8 Screenshots

2.8.1 The bidseditor

2.9 Demo and tutorial

2.9.1 BIDS introduction and BIDScoin demo

A good starting point to learn more about BIDS and BIDScoin is to watch this presentation from the OpenMR Benelux
2020 meeting (slides). The first 14 minutes Robert Oostenveld provides a general overview of the BIDS standard,
after which Marcel Zwiers presents the design of BIDScoin and demonstrates hands-on how you can use it to convert
a dataset to BIDS.

2.8. Screenshots 25

https://youtu.be/aRDK4Gj5qzE
https://osf.io/pm36z/
https://openmrbenelux.github.io/page-speakers/#robert
https://www.linkedin.com/in/mzwiers

BIDScoin, Release 3.5.2

Fig. 8: The main window with an overview of all the bidsmap run items

Fig. 9: The edit window for customizing a bidsmap run item, showing the acq value being set to phantom

26 Chapter 2. Note:

BIDScoin, Release 3.5.2

Fig. 10: The options window with BIDScoin settings

2.9.2 BIDScoin tutorial

1. Preparation. Activate the bidscoin environment and create a tutorial playground folder in your home directory
by executing these bash commands (users from outside the DCCN may have to adapt the first two commands to
their environment):

$ module add bidscoin
$ source activate /opt/bidscoin
$ pulltutorialdata
$ cd bidscointutorial

The new bidscointutorial folder contains a raw source-data folder and a bids_ref reference BIDS folder,
i.e. the intended end product of this tutorial. In the raw folder you will find these DICOM series (aka “runs”):

001-localizer_32ch-head A localizer scan that is not scientifically
→˓relevant and can be left out of the BIDS dataset
002-AAHead_Scout_32ch-head A localizer scan that is not scientifically
→˓relevant and can be left out of the BIDS dataset
007-t1_mprage_sag_ipat2_1p0iso An anatomical T1-weighted scan
047-cmrr_2p4iso_mb8_TR0700_SBRef A single-band reference scan of the
→˓subsequent multi-band functional MRI scan
048-cmrr_2p4iso_mb8_TR0700 A multi-band functional MRI scan
049-field_map_2p4iso The fieldmap magnitude images of the first
→˓and second echo. Set as "magnitude1", bidscoiner will recognize the format. This
→˓fieldmap is intended for the previous functional MRI scan
050-field_map_2p4iso The fieldmap phase difference image of the
→˓first and second echo
059-cmrr_2p5iso_mb3me3_TR1500_SBRef A single-band reference scan of the
→˓subsequent multi-echo functional MRI scan
060-cmrr_2p5iso_mb3me3_TR1500 A multi-band multi-echo functional MRI scan
061-field_map_2p5iso Idem, the fieldmap magnitude images of the
→˓first and second echo, intended for the previous functional MRI scan
062-field_map_2p5iso Idem, the fieldmap phase difference image of
→˓the first and second echo

Let’s begin with inspecting this new raw data collection:

2.9. Demo and tutorial 27

BIDScoin, Release 3.5.2

• Are the DICOM files for all the bids/sub-* folders organised in series-subfolders (e.g. sub-001/
ses-01/003-T1MPRAGE/0001.dcm etc)? Use dicomsort if this is not the case (hint: it’s not the case).
A help text for all BIDScoin tools is available by running the tool with the -h flag (e.g. rawmapper -h)

• Use the rawmapper command to print out the DICOM values of the “EchoTime”, “Sex” and “AcquisitionDate”
of the fMRI series in the raw folder

2. BIDS mapping. Now we can make a bidsmap, i.e. the mapping from DICOM source-files to BIDS target-files.
To that end, scan all folders in the raw data collection by running the bidsmapper command:

$ bidsmapper raw bids

• In the GUI that appears, edit the task and acquisition labels of the functional scans into something more readable,
e.g. task-Reward for the acq-mb8 scans and “task-Stop” for the acq-mb3me3 scans. Also make the
name of the T1 scan more user friendly, e.g. by naming the aquisition label simply acq-mprage.

• Add a search pattern to the IntendedFor field such that the first fieldmap will select your Reward runs and
the second fieldmap your Stop runs (see the bidseditor fieldmap section for more details)

• Since for this dataset we only have one session per subject, remove the session label (and note how the output
names simplify, omitting the session subfolders and labels)

• When all done, go to the Options tab and change the dcm2niix settings to get non-zipped nifti output data
(i.e. *.nii instead of *.nii.gz). Test the tool to see if it can run and, as a final step, save your bidsmap.
You can always go back later to change any of your edits by running the bidseditor command line tool directly.
Try that.

3. BIDS coining. The next step, converting the source data into a BIDS collection, is very simple to do (and can be
repeated whenever new data has come in). To do this run the bidscoiner commandline tool (note that the input
is the same as for the bidsmapper):

$ bidscoiner raw bids

• Check your bids/code/bidscoin/bidscoiner.log (the complete terminal output) and bids/
code/bidscoin/bidscoiner.errors (the summary that is also printed at the end) files for any errors
or warnings. You shouldn’t have any :-)

• Compare the results in your bids/sub-* subject folders with the in bids_ref reference result. Are the file
and foldernames the same (don’t worry about the multi-echo images and the extra_data images, they are
combined/generated as described below)? Also check the json sidecar files of the fieldmaps. Do they have the
right EchoTime and IntendedFor fields?

• What happens if you re-run the bidscoiner command? Are the same subjects processed again? Re-run
sub-001.

4. Finishing up. Now that you have converted the data to BIDS, you still need to do some manual work to make
it fully ready for data analysis and sharing

• Combine the echos using the echocombine tool, such that the individual echo images are replaced by the echo-
combined image

• Deface the anatomical scans using the echocombine tool. This will take a while, but will obviously not work
well for our phantom dataset. Therefore store the ‘defaced’ output in the derivatives folder (instead of e.g.
overwriting the existing images)

• Inspect the bids/participants.tsv file and decide if it is ok.

• Update the dataset_description.json and README files in your bids folder

• As a final step, run the bids-validator on your ~/bids_tutorial folder. Are you completely ready now to
share this dataset?

28 Chapter 2. Note:

preparation.html#dicomsort
preparation.html#rawmapper
workflow.html#step-1a-running-the-bidsmapper
workflow.html#step-1b-running-the-bidseditor
workflow.html#step-1b-running-the-bidseditor
workflow.html#step-2-running-the-bidscoiner
finalizing.html#multi-echo-combination
finalizing.html#multi-echo-combination
https://bids-standard.github.io/bids-validator/

	BIDScoin functionality
	Note:
	Installation
	Dcm2niix installation
	Python 3 installation
	BIDScoin installation

	Data preparation
	Required source data structure
	Data management utilities

	The BIDScoin workflow
	Step 1a: Running the bidsmapper
	Step 1b: Running the bidseditor
	Step 2: Running the bidscoiner

	The bidsmap explained
	Structure and content
	From template to study
	Special bidsmap features

	Finishing up
	Adding meta-data
	Data sharing utilities
	BIDS validation

	Options
	BIDScoin
	dcm2niix
	Plugins

	Advanced usage
	Site specific / customized template
	Plugins

	Screenshots
	The bidseditor

	Demo and tutorial
	BIDS introduction and BIDScoin demo
	BIDScoin tutorial

